The Chain Rule (Prime Notation)

Lecture 18 Section 2.4

Robb T. Koether

Hampden-Sydney College

Tue, Feb 21, 2017

Objectives

Objectives

• The Chain Rule.

The Chain Rule (Prime Notation)

The Chain Rule (Prime Notation)

Let f(x) and g(x) be functions. The derivative of their composition f(g(x)) is

$$\frac{d}{dx}\left(f(g(x))\right)=f'(g(x))\cdot g'(x).$$

Examples

•
$$f(x) = (x^2 + 1)^3$$

Examples

•
$$f(x) = (x^2 + 1)^3$$

•
$$f(x) = \sqrt{x^2 + 1}$$

Examples

•
$$f(x) = (x^2 + 1)^3$$

•
$$f(x) = \sqrt{x^2 + 1}$$

•
$$f(x) = \sqrt{(x^4 + x)^2 + 1}$$

Examples

•
$$f(x) = (x^2 + 1)^3$$

•
$$f(x) = \sqrt{x^2 + 1}$$

•
$$f(x) = \sqrt{(x^4 + x)^2 + 1}$$

$$f(x) = \frac{1}{\sqrt{4-x^2}}$$

Exercise 66

Exercise 66

At a certain factory, the cost of manufacturing q units is

$$C(q) = 0.2q^2 + q + 900$$

dollars. It has been determined that approximately

$$q(t)=t^2+100t$$

units are manufactured during the first *t* hours of a production run. Compute the rate at which the total manufacturing cost is changing with respect to time 1 hour after production begins.